THE EFFECT OF MULTILAYER PLASTIC WASTE ADDITION TO POLYMER MODIFIED BITUMEN CHARACTERISTICS

  • Calvin S.A.L. Gaol Universitas Indonesia
  • Bambang Priyono Universitas Indonesia
  • M. Chalid Universitas Indonesia
  • Adam Febriyanto Nugraha Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia
Keywords: bitumen, multilayer packaging waste, polypropylene, polymer modified bitumen, compatibility

Abstract

Bitumen, one of the main components in manufacturing asphalt, is essential for the growing development of infrastructure in Indonesia. Improving the quality of bitumen and the utilization of multilayer plastic waste is the background of this research. Modified bitumen by adding multilayer plastic waste is called Polymer Modified Bitumen (PMB). This study aimed to determine the effect of adding multilayer plastic waste as a bitumen mixture filler. The method used to mix this material is hot melt mixing. The independent variables used were stirring temperatures of 170, 180, and 190 °C, and the composition of plastic waste is 3, 4, and 5 wt%. The characterizations were FTIR, TGA, contact angle test, and SEM. The results showed that the higher the composition level of multilayer plastic waste, the higher the dispersion properties of the mixture and the lower the thermal stability of the mixture.

References

I. Shuker and C. Cadman, Indonesia - Marine Debris Hotspot Rapid Assessment: Synthesis Report, World Bank (2018).

J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan dan K. L. Law. (2015). “Plastic Waste Inputs from Land into the Ocean,” Science Mag, 347(6223), p. 768-771

F.Knappich, F. Hartl, M. Schlummer, & A. Mäurer. (2017). Complete Recycling of Composite Material Comprising Polybutylene Terephthalate and Copper. Recycling, 2(2), 9. https://doi.org/10.3390/recycling2020009

S. Hinislioglu. (2004). Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Materials Letters, 58(3-4), 267-271. https://doi.org/10.1016/s0167-577x(03)00458-0

L. Brasileiro, F. Moreno-Navarro, R. Tauste-Martínez, J. Matos, M.C. Rubio-Gámez. (2019). Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 2019, 11, 646

Selpiana, P. Susmanto, S. Miskah, L. Dharmawan, dan M. F. R. Akbar. (2019). Pemanfaatan Limbah Plastik Berlapis Alumunium (Multilayer) dengan Metode Solvasi. Palembang : Fakultas Teknik Kimia Universitas Sriwijaya.

V. Bulatović, V. Rek and K. Marković. (2015) " Polymer modified bitumen," Materials Research Innovations, vol. 16, no. 1, pp. 1-6.

T. McNally, Polymer Modified Bitumen, Oxford: Woodhead Publ., (2011).

S. Tapkın. (2008). The effect of polypropylene fibers on asphalt performance. Building And Environment, 43(6), 1065-1071. https://doi.org/10.1016/j.buildenv.2007.02.011

C. Giavarini. (1994). Chapter 16 Polymer-Modified Bitumen. Developments In Petroleum Science, 381-400. https://doi.org/10.1016/s0376-7361(09)70263-8

P. Ahmedzade, K. Demirelli, T. Günay, F. Biryan, O. Alqudah. (2015). Effects of Waste Polypropylene Additive on the Properties of Bituminous Binder. Procedia Manuf. 2015, 2, 165–170

K. Kaiser, M. Schmid and M. Schlummer. (2017). "Recycling of Polymer-Based Multilayer Packaging: A Review," Recycling, vol. 3, no. 1, (2017) p. 1.

A. Anisa. (2010). "Evaluasi dan Analisis Waste pada Proses Produksi Kemasan Menggunakan Metode FMEA (Skripsi)," Universitas Indonesia.

J. Zhu, B. Birgisson and N. Kringos. (2015). "Polymer modification of bitumen: Advances and challenges," European Polymer Journal, vol. 54, pp. 18-38.

E. Yuanita, B.E. Hendrastyawan, F.D. Firdaus, & M. Chalid. (2017). Improvement of polypropylene (PP)-modified bitumen through lignin addition. IOP Conference Series: Materials Science and Engineering, 223, 012028.

R. Ren, K. Han, P. Zao, J. Shi, L. Zao. (2018). Identification of Asphalt Fingerprint and Principal Component-Liniar Discriminant Analysis. Construction and Building Materials.

S. Weigel, & D. Stephan. (2017). The prediction of bitumen properties based on FTIR and multivariate analysis methods. Fuel, 208, 655-661. https://doi.org/10.1016/j.fuel.2017.07.048

L. Barbes, C. Radulescu, C. Stihi. (2014). ATR-FTIR Spectrometry Characterisation of Polymeric Materials. Romanian Reports in Physics, Vol. 66, No. 3, p. 765–777

J. Jiménez-Mateos, L. Quintero, & C. Rial. (1996). Characterization of petroleum bitumens and their fractions by thermogravimetric analysis and differential scanning calorimetry. Fuel, 75(15), 1691-1700. https://doi.org/10.1016/s0016-2361(96)00169-x

G. Lamour, A. Hamraoui, A. Buvailo, Y. Xing, S. Keuleyan, & V. Prakash. et al. (2010). Contact Angle Measurements Using a Simplified Experimental Setup. Journal Of Chemical Education, 87(12), 1403-1407. https://doi.org/10.1021/ed100468u

S. Ebnesajjad. (2014). Surface Tension and Its Measurement. Surface Treatment Of Materials For Adhesive Bonding, 7-24. https://doi.org/10.1016/b978-0-323-26435-8.00002-2

C. Gogos, & Tadmor,Z. (2006). Principles Of Polymer Processing, Second Edition. John Wiley & Sons, Inc., Publication.

Published
2023-01-31
How to Cite
Gaol, C. S., Priyono, B., Chalid, M., & Nugraha, A. F. (2023). THE EFFECT OF MULTILAYER PLASTIC WASTE ADDITION TO POLYMER MODIFIED BITUMEN CHARACTERISTICS. OISAA Journal of Indonesia Emas, 6(1), 57-64. https://doi.org/10.52162/jie.2023.006.01.7
Section
Articles